Problematic Social Media Use and its relationship with Cyber Victimization and Cyberbullying Perpetration

 

Systematic Review Article 


Problematic Social Media Use and its relationship with Cyber Victimization and Cyberbullying Perpetration 



Pooja Bista,1 Anju S. Nair,2 Nitin Anand,3 Manoj Kumar Sharma,4 Anamika Sahu5, Rajesh Kumar,6 Ravikesh Tripathi7 

1,2*Research Scholar, Service for Healthy Use of Technology (SHUT) Clinic, Department of Clinical Psychology, National Institute of Mental Health and Neuro Sciences (NIM- HANS), Bengaluru, Karnataka, India 

3Additional Professor of Clinical Psychology, Consultant, SHUT Clinic, Department of Clinical 

Psychology, NIMHANS, Bengaluru, Karnataka, India 

4Professor of Clinical Psychology, Consultant In-charge, SHUT Clinic, Department of Clinical 

Psychology, NIMHANS, Bengaluru, Karnataka 

5,6,7Assistant Professor of Clinical Psychology, Department of Clinical Psychology, NIM-HANS, 

Bengaluru, Karnataka, India 

Address for Correspondence: Email:nitinanand19800@gmail.com 


ABSTRACT 

Objectives: The increased use of the internet and social media, problematic social media use (PSMU), cyberbullying perpetration (CBP), and cyberbullying victimization (CV) have emerged as  significant concerns  in the digital world.  Since there is a  lack of agreement on the operational definitions of these phenomena, there is a paucity of research on these variables. Although the earlier studies have attempted to establish the incidence and relationship of these variables independently, there has been limited work on outlining the processes underlying the association between PSMU and cyberbullying perpetration and cyberbullying victimization. Objectives: In this review, we attempted to review the relational pathways between the outlined phenomena to develop a better understanding and to facilitate an impetus toward the development of preventive interventions. The objectives of the present study were to 1) review the prevalence and sociodemographic characteristics of PSMU, CBP, and CV and 2) explore the underlying pathways of PSMU, CBP, and CV and their implications on mental health. Methods: We evaluated studies published after 2010 that explored PSMU and its relation to cyber-bullying behaviours. Three reviewers conducted a literature search using Google Scholar and EBSCO Indexing systems. Both primary and secondary research utilizing quantitative and qualitative methods were included. Results: The  association between PSMU and cyberbullying perpetration is direct as well as driven by a number of mediating and moderating factors such as time spent online on social media networking sites, age, gender, risky online behaviours, and the presence of internalizing and externalizing symptoms, among others. Past victimization experience predicts cyberbullying perpetration through revenge motives and  negative  affect regulation. The relationship between  PSMU  and  cyberbullying behaviors is therefore far more intricate and dynamic, having an adverse impact on individuals’ mental health. Conclusion: Social media networking is increasing at an alarming rate among adolescents and young adults and with it comes the risk of PSMU. Excessive spending of time on social media networking sites increases the risk of cyber victimization experiences and cyberbullying perpetration behaviours. There appears to be a significant need to explore the complex relationships between PSMU. CV, CBP, and mental health conditions. Intervention programs need to be designed for the prevention of cyberbullying behaviours and to develop mechanisms for overcoming experiences of cyber victimization. 

Keywords: Problematic social media use, Cyberbullying perpetration, Cyberbullying victimization, Depression  


INTRODUCTION 

Globally, social media use  is  on the  rise. These platforms are increasingly being used for com-  munication,  socialization,  transactions, shopping,  and  entertainment.  Just  like  how Theodore Levitt quoted; “Anything in excess is a poison”, the massive increase in social media usage has also turned problematic. To date, there hasn’t been any consensus on the definition of Problematic  social  media  use  (PSMU).  It  is considered to be the excessive consumption of social  media  platforms  that  causes  adverse psychological  and  social  outcomes which are detrimental to the user’s personal, occupational, and/or social functioning (Cataldo et al., 2022). While some authors consider problematic social media use (PSMU) similar to addictive disorders (Andreassen, 2015a; Henzel & Håkansson, 2021; Li et al., 2016), others believe it should be treated as a compensatory or coping mechanism that an individual  adopts  to  deal  with  life  stressors (Carbonell & Panova, 2017; Singh et al., 2020). DSM 5’s section III includes Internet Gaming Disorder  as  the  condition  for  further  study (APA_DSM-5-Internet-Gaming-Disorder.Pdf, n.d.), but ICD 11 includes Gaming disorder in its classification  (Gaming  Disorder,  n.d.). As outlined in Li et al. (2016), problematic internet use can display signs and symptoms such as (a) higher than intended usage; (b) preoccupation; (c) withdrawal-like symptoms such as anxiety, restlessness, negative affect, restlessness etc; (d) tolerance; (e) not being able to stop or reduce usage despite attempting to; (f) craving; (g) losing interest in other activities; (h) continuing to use the web despite potential risks such as using it while driving; (i) using it to escape or alleviate negative emotions; and (j) lying about how much time is spent on it. This criterion is applicable in identification  of  individuals  who  engage  in problematic social media use. 


Nature of Problematic Social Media Use, Cyberbullying Perpetration, Cyber Victimization 

Social  media use  is seen to be related  to cyber-victimization in 19% to 45% of countries and  to  cyber-perpetration  in  38%  to 86% of countries (Craig et al., 2020). Daily problematic social media  use increases  the  probability of online victimisation or cyber  victimization  by 30%. Among  the problematic users of  social media, more than 40% were victims of cyber- violence perpetration  (Marttila et   al., 2020). Cyber bullying perpetration is one of the common types of  cyber  violence  (Hinduja &  Patchin, 2008; Pandita  Hakhroo, 2020; Tsitsika et al., 2015;  Zhu  et  al.,  2021).  Describing  cyberbullying perpetration is still a contentious issue, similar to many other internet addictive behaviour terminologies. In Tokunaga (2010)’s definition, cyberbullying  is  any  behaviour  that  uses electronic or digital media to communicate hostile or aggressive messages with the intent of harming or discomforting others. This definition as well as  all  the  ones  provided  by  other  authors (Finkelhor et al., 2000, Juvonen and Gross, 2008, Li, 2008, Patchin & Hinduja, 2006, Slonje & Smith, 2008, Smith et al., 2008, Willard, 2007, Ybarra & Mitchell, 2004) have similar features to the definition of traditional bullying (Olweus, 1993) with regard to intention of harming and the imbalance of power. Even when there is an overlap between traditional bullying and cyber- bullying perpetration, it is seen to violate the three fun- damental assumptions of traditional bully- ing; offenders are known to the victims, there is ex- istence of power imbalance and school being the site where bullying occurred (Greene, 2006). 

It appears  that  even  when  cyberbullying perpetration and traditional bullying share some common ground, cyberbullying perpetration is composed of its own distinctive characteristics (Notar et  al., 2013). These characteristics  as noted by Smith (2012) include having expertise in technology, the capacity for anonymity, relative distance, complicated bystander roles, status that is obtained or proven indirectly, and difficulty escaping from harassment. The power dy- namics in cyber bullying is different from that of tradi- tional bullying. For individuals who engage only in cyberbullying perpetration, the power is found in their ability to create an online persona, that is most often more aggressive compared to how the offender is in real life, in anonymity (Dooley, Pyzalski,  &  Cross,  2009;  Smith,  2012; Vandebosch  & Van  Cleemput,  2008)  and  in technological skills (Dooley, Pyzalski, & Cross, 2009;  Smith,2012).  Brown  et  al.  (2014) considered cybervictims as those individuals who are on the receiving end of cyberbullying perpetration behaviours. Hence, cyberbullying victimi- zation  involves an individual  as  a  victim and cyberbullying perpetration involves an individual as the offender in the offender-victim relationship of cyberbullying (Bai et al., 2021). 

Apart  from  the  overlap  between  cyber- bullying perpetration and offline bullying, it is also seen that there exists an overlap between cyber perpetration and  online victimisation or cyber vic- timization. This overlap was reported by 14.9% of 1898 adolescents (Chan & Wong, 2020) and 4.3% of 1285 middle school students (Rice, 2015).  Musharraf (2014) also found a strong correlation between online victimization or cyber victimization  and  online aggression/ cyberbullying perpetration. One explanation for this could be the mediating role played by revenge motives and the other could be that the emotional strain  that  a  victim  experience  gives  rise  to frustration and anger, which then leads to them perpetrating online violence (Heirman, 2011). 

Hoff Sidney & Mitchell (2009) found that children tend to believe that the school admini- stration would not take their complaint on cyber- violence seriously, which forces them to retaliate and  even  indulge  in  physical  violence. They engaged in cyberbullying perpetration to  cope with their experience, to regulate  the negative emotions, and to establish that they were not easy targets. 


Problematic Social Media Use, Cyberbullying Perpetration and Cyber Victimization: An Emerging Concern 

Problematic internet use (PIU) prevalence estimates  ranged  from  6%  to  9.7%  in  pre- pandemic  meta-analyses  (Burkauskas  et  al., 2022). 98% of the students who participated in a survey in Iran were internet users, of which 21% identified as PIUs. Spending excessive time on internet, history of mental health difficulties and  using  internet  for  gaming  and  chatting increased the risk for PIU (Mazhari, 2012). An Indian study noted an  estimate of 47% PIU’s among  nursing  students  (Thirusangu  et  al., 2020).  Problematic  social  media  use  is considered to be a subset of Problematic Internet Use  (Moretta et al., 2022). A study on adole- scents’ health and  wellbeing indicates  7% as problematic  social  media  users (Spotlight on Adolescent Health and Well-Being | HBSC Study, n.d.). The  prevalence  rate  of  social  media addiction  among  college  students  was  2.8% according  to  Olowu  and  Seri  (2012),  while Jafarkarimi and Sim (2016) in their study found 47% are addicted to the use of Facebook. Another study reported 4.5% of adolescents at risk for PSMU (Bányai et al., 2017). Problematic social media use is consistently and strongly associated with  both  cyberbullying  perpetration  and victimization (Craig et al., 2020). Marttila et al. (2020) explains that it is not just the number of hours spent online, rather the number of social media networking accounts and the way it is used (active use than passive use), the young age of the victim, contact  with strangers, and online political activity that predicts cyber victimization. The lack of agreement on what constitutes and defines cyber violence or cyberbullying perpe- tration and cyber victimization makes it difficult to estimate its prevalence. According to a poll held  by  the  United  Nations  International Children’s  Emergency  Fund  (UNICEF, 2019) across thirty countries, one in three young people have been bullied online and one-in five reported of skipping school due to it. Reported rates for cyber-victimization vary from 4.8% (Sourander et al., 2010) to 55.3%  (Dilmaç 2009)  across different  age  groups.  Cyber  violence  is very common among school students. Li (2006), in his study, found that more than half the sample knew  someone  with  the  experience  of  being bullied online, a quarter of them were victims themselves in school, and one in six students were cyberbullying perpetrators. Surveyed rates  of 8.6%  were  reported  among  college  students (Schenk & Fremouw, 2012). Around 11% of the youth reported that they have engaged in online bullying  or  cyber-bullying  perpetration,  29% were  cyber  victims  and  49%  were  online bystanders (Hinduja & Patchin, 2006). 

The  common electronic methods used  by cyber bullies (Wong-Lo & Bullock, 2011) include (i)  emails (sending  threatening  messages  and forwarding a private email to everyone, thus hu- miliating  the  original  sender  in  public),  (ii) chatrooms (sites on the internet where people post negative comments), (iii) websites for voting and rating (A website where the cyber bullies upload photos of the victim so that users can rate the victim’s physical appearance or personality), (iv) Instant/text messaging  (Using mobile devices, cyber bullies send text messages to targets that contain offensive remarks and insults, revealing the text to many before sending it to the victim), (v) photoshopping (A tool used to edit images or photos; cyberbullies can use it to edit victims’ photos and generate new ones with objectionable features)  and  (vi)  sexting  (The  texting  and exchange of messages and images with sexual content). 

The increasing rates of PSMU and cyber- bullying perpetration clearly point at the emerg- ing concern of this issue among adolescents and young adults. Additionally, both are associated with potentially  detrimental consequences on mental health. Till now most researchers have independently explored these variables and their associations. An understanding of how the PSMU contributes to cyberbullying  victimization and cyberbullying  perpetration  will  enable  us  in creating  insights  to  the  need  for  developing preventive  interventions  for  the  vulnerable population. In this article, we review the literature to  determine  the  processes  underlying  this connection of PSMU with CBP and CV. 

METHODS 

A  literature  search  was  conducted  using Google Scholar and EBSCO. Three reviewers (S.  Nair,  Bista,  and Anand)  independently screened abstracts for eligibility. Both primary and  secondary  research  was  included  which utilized one or both of qualitative and quantitative methods. There was no restriction on study design and  studies on all developmental  groups  were included in the context of PSMU, cyberbullying perpetration, and cyber victimization behaviours. 

To identify peer-reviewed journal articles, we  conducted abstract search  using  keywords rele- vant to the study variables. Due to lack of consensus  in  defining  cyberbullying,  we’ve included  studies  which  have  conceptualized cyberbullying as having at least following three compo- nents:  1) Use  of electronic  media,  2) communication  of  hostile  or  aggressive messages, and 3) intent to harm (in  line with Tokunaga’s (2010) definition). We searched for studies  utilizing closely-related  terms such  as “cyberviolence”,  “cyber-aggression”,  “cyber- bullying offending”,  “cyberbullying perpetra- tion”, “cyberbullying victimization”, and “cyber- victimization”. We  excluded  research  which limited  their  focus  to  cyberstalking,  cyber- harassment,  and  other  cyber-crimes.  For problematic social media use, we searched using keywords  such  as  “PSMU”,  “social  media addiction”, “internet use addiction”, “problematic internet use,” “SNS”, and “social network sites.” Inclusion of conceptually-similar  and closely- related terms ensured that we were not missing out on the essence of the inter-relations among variables and  eliminating studies  that  did not address the  study  objectives. Additionally, in order to explore their relevance to mental health outcomes, we used keywords such as “mental health,”  “depression,”  “anxiety,”  “stress,” “loneliness,” and “self-esteem.” 

The  inclusion criteria for review were: 1) articles published  after 2010, 2) published  in English  language.  However,  we’ve  included seminal  studies  and  theoretical  frameworks published before 2010 as well as those limited to  a  particular  geo-political  or  ethnic group. Following structure was used to guide the review in  the  context  of  PSMU  and  cyberbullying behaviour: 1)  Introduction  to  PSMU,  cyber- bullying  perpetration, cyber-victimization; 2) Prevalence of  PSMU, cyberbullying perpetra- tion, cyber-victimization; 3) Socio-demographic characteristics and PSMU, cyberbullying perpe- tration, and cyber-victimization;  4) Interplay between  PSMU,  cyberbullying  perpetration, cyber-victimization; 5) Negative mental health outcomes of PSMU, cyberbullying perpetration, and cyber-victimization  and  6)  Strategies  for prevention of cyberbullying perpetration. 


DISCUSSION 

Demographic Characteristics: Problematic Social Media Use and Cyberbullying Perpetration 

The studies investigating gender differences in  PSMU  have shown  mixed findings. While some report  that males are more  likely to  be addicted  to  social  networking  sites  (Cam  & Isbulan, 2012), others found PSMU to be more prevalent among females (Childs & West, 2021). A few have also suggested inconsistent findings (Andreassen, 2015). Similar findings have been noted  with  cyberviolence.  Some studies have reported greater prevalence of cyber perpetration among males (Li, 2006., Sourander et al., 2010; Yudes  et  al.,  2020)  and  cyber-victimization among females (Guo, 2016; Sourander  et al., 2010). Studies exploring gender differences in cyberviolence, however, seem to be inconsistent (Hinduja & Patchin, 2008; Li, 2010; Macdon- ald & Roberts-Pittman, 2010; Slonje & Smith, 2008., Smith et al., 2008., Topcu, Erdur-Baker, &  Capa-Aydin,  2008;  Varjas,  Henrich,  & Meyers,  2009., Williams  and  Guerra,  2007; Ybarra & Mitchell, 2004). 

When  we  consider  age,  the  trajectory of cyberbullying  behaviours  shows  an  initial increase from adolescence to emerging adulthood followed by a decline for the later age groups (Barlett & Chamberlin, 2017). From a develop- mental perspective, females are more likely than males to be cyberbully perpetrators during early adolescence whereas males are more likely to per- petrate  during  later  adolescence  (Barlett  & Coyne, 2014). Even among the emerging adult population,  cyberbullying  behaviours  are commonly experienced (Gibb & Devereux, 2016, 2014),  with  younger  emerging  adults  more commonly engaging in cyberbullying perpetra- tion than their older counterparts (Balakrishnan, 2015; Kircaburun et al., 2019). 

Problematic Social Media Use: Its Connection to Cyber Victimization and Cyberbullying Perpetration 

Several studies have consistently shown a positive  association  between  PSMU  and cyberbullying behaviours (Craig et al., 2020). Twitter, Facebook, YouTube, and chat rooms are some of the common social media sites on which cyberbullying  perpetration  is  prevalent (Whittaker & Kowalski, 2014). Studies have also consistently shown that more time spent online means more chances of engaging in cyberbullying perpetration behaviours (Balakrishnan, 2015). In other words, as the time spent on social media increases so does the chance of either engaging in cyberbully perpetration or becoming  cyber victimized. 

However, the relationship between PSMU and cyberbullying behaviours is not limited to the  usage  and/or  frequency  of  PSMU  as  it becomes more complex  with  the  inclusion of other  mediating  and  moderating  factors. A number of studies have also suggested significant gender  differences in the  pathways to  cyber- bullying behaviours (Kapitany-Foveny, 2022). For  instance, while frequency of social media usage  significantly  predicted  cyberbullying perpetra- tion behaviours in females, it was the risky use of the internet that predicted cyber-bullying  perpetration in  males  (Erdur-Baker, 2010).  Further  suggesting  that  internalizing symptoms in females and externalizing symptoms in males tend to be potential risk factors for both engaging in PSMU and cyberbullying perpetra- tion behaviours (Brighi, Menin,  Skrzypiec, & Guarini, 2019). Depression is one such internaliz- ing symptom which, irrespective of the gender, has  been  found  to  predict  both  PSMU  and cyberbullying perpetration behaviours (Kircaburun et al., 2019). This could be explai- ned by the social compensation theory (McKenna & Bargh, 2000) wherein individuals resort to the internet and  social media use for  social inter- action  and  for  building  social connections as these individuals struggle to engage in face-to- face social interactions. The in-person interac- tions become difficult for these individuals as they may be experiencing social anxiety or are introverted, shy and lack skills for initiating and maintaining social relationships. Thus, spending more time on social media sites increases the risk for either engaging in cyberbullying perpetration or cyber-victimization. 

Furthermore,  the  likelihood  of  being  a perpetrator of cyberbullying is also associated with  being  a  victim  (Kowalski  et  al.,  2014, Wright  &  Li,  2013).  The  overlap  between perpetrators and victims can be explained by the role inversion hypothesis (Mishna et al., 2012) in which victims in offline setting adopt the role of a bully online and vice versa for the bullies. Hence, to offer a perspective on a likely pathway to cyber perpetration, it is likely that individuals who are already experiencing depressive sympto- matology and/or have deficits to engage in face- to-face social interactions transition to spending excessive time on social media networking sites which  likely  increases  the  likelihood  to  be victimized online due to poor social skills and/or through PSMU. These cyber-victims then may adopt the role of a cyber-bully/cyber perpetrator due to revenge motive, anger ruminations, and poor  regulation  of  negative  affect. This  may further  maintain  the  vicious  cycle  of  PSMU, cyber victimization and cyberbullying perpetra- tion  in  individuals suffering  from  depressive symptoms. Needless to say, pathways of cyber- bullying perpetration and cyber-victimization are dynamic  and  warrant  further  investigation, especially in the context of depression and other mental health conditions. 

Problematic Social Media Use, Cyberbullying Victimization, Cyberbullying Perpetration and Mental Health Implications 

As risky use of and more time spent on social media networking sites increases the likelihood of being a cyber bully and/or a victim online, it is  not  surprising  that  negative  mental  health outcomes  are  strongly  associated  with  both PSMU  and  cyberbullying  perpetration  and victimization  behaviours. The  meta-analytic review by Huang (2020) revealed that  PSMU had a negative impact on the self-esteem of males while another survey additionally showed high levels of depressive symptoms in adolescents at risk for social media use (Banyai et al., 2017). There is strong evidence for PSMU and depre- ssion, anxiety (Shannon et al., 2022), insomnia (Malaeb et al., 2020), reduced social support in real  life  (Meshi  &  Ellithorpe,  2021),  and comorbid  psychiatric  disorders  (Hussain  & Griffiths, 2018). Problematic internet use, which subsumes PSMU, was significantly associated with developmental disorders such as attention deficit  hyperactivity  disorder  (ADHD)  and autism  spectrum  disorder  (ASD),  depressive disorders, and a greater level of disturbance in sleep (Restrepo et al., 2020). 

With respect to the relation between cyber- bullying behaviours and negative mental health out-comes,  there  is  more  evidence  for  cyber victimization than  for  perpetration.  Previous cyberbullying victimization experiences has been found to be significantly associated with depres- sion,  anxiety  (Landstedt  and  Persson,  2014; Mitchell  et  al., 2016),  psychological distress (Takizawa,  Maughan,  & Arseneault,  2014), suicidal  ideation,  substance  abuse  (Bauman, Toomey, & Walker, 2013), and low self-esteem (Singh & Sonkar,  2013).  On  the other  hand, evidence for cyberbullying perpetration either suggests no significant impact on mental health variables (Hill et al., 2017; Musharraf & Anis- ul-Haque, 2018) or lesser impact in comparison to  cyber  victimization  (Cassidy,  Faucher,  & Jackson, 2013) while a few suggest mental health consequences for both the groups (Hinduja & Patchin, 2010). 

It is likely that individuals who’re already experiencing  mental  health  issues  are  more vulnerable  to  engaging  in  PSMU  and  cyber- bullying  behaviours.  The  internalizing  and externalizing symptoms such as impulsivity and reduced  self-esteem  along  with  poor  self- awareness  and  inadequate  social  skills  may further  lead  to  adverse  mental  health conse- quences. Through the pathways discussed earlier, these  individuals  may  either  continue  to  be cyberbullied or  subsequently  engage in online perpetration. 

Strategies for Prevention of Cyberbullying Perpetration 

A number of studies have reviewed strategies and programs for prevention of cyberbullying perpetration  behaviours  ranging  from  intra- personal to macro level (e.g., Chisholm, 2014). At the individual level, it is important that indivi- duals are aware and have adequate knowledge about healthy use of technology. Hence, aware- ness about the consequences of cyberbullying, emphasis on potential harm to self and others, discretion in sharing private information, and safe use of internet are some of the components that can be incorporated as part of psychoeducation. The  Media  Heroes  program  (Schultze-Krumbholz,  Zagorscak, &  Scheithauer, 2018) is a manualized school-based intervention that not only targets at the individual, classroom, and family level but also guides “trainers” such as the police and the teachers to further implement in their workplace  settings.  It is theoretically rooted at the Theory of Reasoned Action (Ajzen & Fishbein, 1980) and the Theory of Planned Behaviour (Ajzen, 1991) and targets individuals’ attitudes,  subjective  norms,  and  perceived behavioural control through education, group- based activities, and skills training. 

The systematic and meta-analytic reviews on various program interventions for reducing cyberbullying  perpetration  behaviours  have identified multiple components (Hutson, Kelly, & Militello, 2017) and it is not surprising that almost  80%  of  those  programs  have  some elements of skill-building (Polanin et. al, 2021). For  instance,  PREDEMA  (Programa  de Educación  Emocional  para Adolescentes  or Program  of  Emotional  Education  for Adole- scents; Schoeps, Vil- lanueva, Prado Gasco, & Montoya-Castilla, 2018) is one such intervention program originally designed for 12–15-year-old early middle school adolescents. It was concep- tualized that having adequate emotional compe- tencies such as, identification of one’s emotions and regulation of negative emotions would not only prevent bullying behaviours but also work as a protective factor against the adverse conse- quences of  victimization,  both  in  online  and offline formats. 

Empathy training is also an important com- ponent  that  is  incorporated  in  intervention programs as a preventative measure (Salem et al., 2023; Hutson, Kelly, & Militello, 2017). This could possibly be because of the perpetrators’ perception that their behaviour does not bear any harm on the target/cyber victim (Shapka, 2011) which  further  maintains  cyberbullying  perpetration. Ang  and  Goh  (2010)  noted  gender differences  in affective and cognitive empathy in the context of cyberbullying perpetration and stressed that empathy training for girls should focus on affective aspects while for boys, cogni- tive aspects should be emphasized. Studies on pathways  to  cyberbullying perpetration beha- viours have  shown males and females  to also differ on factors other than empathy towards the victim such  as help-seeking,  attitude towards risks associated with internet use, and impulsivity (e.g.,  Kapitany-Foveny,  2022).  Hence,  it  is suggested that the interventions for cyberbullying perpetration be gender-informed and take these factors into consideration. These  factors may work as a protective cushion against the adverse consequences  of  cyberbullying  perpetration behaviours. 

At  the  global  level,  UNICEF  (“Cyber- bullying: What is it and how to stop it,” n.d.) has initiated a campaign in collaboration with cyberbullying experts and social media platforms to  bring  awareness  about  cyberbullying perpetration and the ways to deal with it. Talking to a trusted adult, calling a helpline number, and using privacy settings on social media handles are  some  of  the  suggestions provided  on the campaign website. 

Despite recent advancements in strategies for prevention of cyberbullying perpetration, most of  the  programs  have  focused  primarily  on schools and school-going students. It warrants fur-  ther  investigation  into  cyberbullying behaviours of developmental age groups other than school-going students as well as develop- ment of intervention programs for settings beyond the school. For example, psychoeducation, peer learning, anti-bullying policies, training stake- holders at all levels of the organization are some of the strategies that can be explored. 

CONCLUSION 

Social media usage is at an all-time high, and this trend does not appear to be slowing down anytime  soon.  In  our paper,  we  explored  the relationship between problematic social media use,  cyber  bullying  perpetration  and  cyber bullying victimization. While spending more time on social media increases the risk for engaging in  cyberbullying  perpetration  behaviours  or becoming  victimized  online,  this  relationship appears to be more complex than it seems. The association between PSMU and cyberbullying is driven by factors other than just the time spent online  such  as  age,  gender,  risky  online behaviours, and the presence of internalising and externalising symptoms among others. Moreover, past cyber victimization experiences are seen to predict  cyber  bullying  perpetration  through revenge motives and negative affect regulation. Due to the roles played by these mediating and moderating  factors,  the  relationship  between problematic  social  media  use,  cyberbullying victimization, and cyberbullying perpetration is therefore far more intricate and dynamic. These subsequently  have adverse impact on individ- uals’ mental health, maintaining the vicious cycle of PSMU and cyberbullying perpetration. There is  an urgent need  to  focus research  on  these aspects  to  comprehend  these  complex  rela- tionships as social media networking is increasing at an alarming rate among adolescents and young adults which has the potential to offer negative experiences to many in the form of cyberbullying victimization and cyberperpetration. In addition, the prevention  programs  need  to be  designed which focus on developing emotional and social competencies in  an  adequate  manner  for  the adolescent  and young adult populations.  Such programs  would  be  most  beneficial  to  be implemented at  the  school  and  institutions  of higher learning which will likely not only prevent cyberbullying behaviours  but also work as  a protective mechanisms for overcoming victimi- zation experiences. 

Footnotes:*Both authors have contributed equally to the manuscript 

 

REFERENCES 

A New Phenomenon Order DSM-5 and DSM-5 Collection at www.appi.org. (n.d.). https:// www.psychiatry.org/File%20Library/ Psychiatrists/Practice/DSM/APA_DSM-5- Internet-Gaming-Disorder.pdf 

Ajzen, I., & Fishbein, M. (1980). Understanding attitudes  and  predicting  social  behavior. Englewood Cliffs, NJ: Prentice-Hall. 

Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Deci- sion  Processes,  50(2),  179–211.  https:// doi.org/10.1016/0749-5978(91)90020-t. 

Andreassen, C. S. (2015). Online Social Network Site Addiction: A Comprehensive Review. Current Addiction Reports, 2(2), 175–184. (APA_DSM-5-Internet-Gaming-Disor- der.Pdf, n.d.) 

Ang, R. P., & Goh, D. H. (2010). Cyberbullying among adolescents: The role of affective and cognitive  empathy,  and  gender.  Child Psychiatry & Human Development, 41(4), 387–397. https://doi.org/10.1007/s10578- 010-0176-3 

Bai, Q., Huang, S., Hsueh, F.-H., & Zhang, T. (2021).  Cyberbullying  victimization  and suicide ideation: A crumbled belief in a just world. Computers in Human Behavior, 120, 106679. https://doi.org/10.1016/j.chb.2021. 106679 

Balakrishnan, V. (2015). Cyberbullying among young  adults  in  Malaysia: The  roles  of gender,  age  and  Internet  frequency. Computers in Human Behavior, 46, 149– 157.  https://doi.org/10.1016/j.chb.2015. 01.021 

Bányai,  F.,  Zsila, Á.,  Király, O.,  Maraz, A., Elekes, Z., Griffiths, M. D., Andreassen, C. S., & Demetrovics, Z. (2017). Problematic Social  Media Use: Results from a Large- Scale Nationally Representative Adolescent Sample.  PLoS  ONE,  12(1),  e0169839. https://doi.org/10.1371/journal.pone. 0169839 

Barlett,  C.P.,  &  Chamberlin,  K.  (2017). Examining cyberbullying across the lifespan. Com- puters in Human Behavior, 71, 444– 449.  https://doi.org/10.1016/j.chb.2017. 02.009 

Barlett, C., & Coyne,  S.  M. (2014). A meta- analysis of sex differences in cyber-bullying be- havior: The moderating role of age: Sex Differences in Cyber-Bullying. Aggressive Behavior, 40(5), 474–488.  https://doi.org/ 10.1002/ab.21555 

Bauman,  S., Toomey,  R.B.,  & Walker,  J.L. (2013). Associations  among  bullying, cyberbul- lying, and suicide in high school students.  Journal  of Adolescence,  36(2), 341–350.  https://doi.org/10.1016/j.adole scence.2012.12.001 

Brighi, A., Menin, D., Skrzypiec, G., & Guarini, A. (2019). Young, bullying, and connected. Common  pathways  to  cyberbullying  and problematic  internet  use  in  adolescence. Fron- tiers in Psychology, 10, 1467. https:// doi.org/10.3389/fpsyg.2019.01467 

Brown, C. F., Demaray, M. K., & Secord, S. M. (2014). Cyber victimization in middle school and relations to social emotional outcomes. Computers in Human Behavior, 35, 12û% 21.  https://doi.org/10.1016/j.chb.2014. 02.014 

Burkauskas, J.,   Gecaite-Stonciene,   J., Demetrovics, Z., Griffiths, M. D., & Király, O.  (2022).  Prevalence  of  problematic Internet use during the coronavirus disease 2019  pandemic.  Current  Opinion  in Behavioral  Sciences, 46, 101179.  https:// doi.org/10.1016/j.cobeha.2022.101179 

Cam, E., & Isbulan, O. (2012). A New Addiction for Teacher Candidates: Social Networks. Turkish  Online  Journal  of  Educational Technology - TOJET, 11(3), 14–19. 

Carbonell, X., & Panova, T. (2017). A critical consideration  of  social  networking sites’ addiction potential. Addiction Research & Theory,  25(1),  48–57.  https://doi.org/ 10.1080/16066359.2016.1197915 

Cassidy, W., Faucher, C., & Jackson, M. (2013). Cyberbullying among youth: A comprehen- sive review of current international research and its implications and application to pol- icy and practice. School Psychology Inter- national, 34(6),  575–612. https://doi.org/ 10.1177/0143034313479697 

Cataldo, I., Billieux, J., Esposito, G., & Corazza, O. (2022). Assessing  problematic  use  of social media: Where do we stand and what can  be  improved?  Current  Opinion  in Behavioral  Sciences, 45, 101145.  https:// doi.org/10.1016/j.cobeha.2022.101145 

Chan, H.C. (Oliver), & Wong, D.S.W. (2020). The overlap between cyberbullying perpetra- tion  and  victimisation:  Exploring  the psychosocial characteristics of Hong Kong ado- lescents. Asia Pacific Journal of Social Work and Development,  30(3), 164–180. https://doi.org/10.1080/02185385.2020. 1761436 

Childs, A.,  & West,  R.  (2021).  Problematic Social  Media  Use: Are  There  Gender Differences in Control and Craving. Annual Student  Research  Poster  Session.  https:// scholar- ship.depauw.edu/srfposters/54 

Chisholm, J.F.. (2014). Review of the status of cyberbullying and cyberbullying prevention. Journal of Information Systems Education. 25. 77-87. 

Craig, W., Boniel-Nissim, M., King, N., Walsh, S.D., Boer, M., Donnelly, P.D., Harel-Fisch, Y.,  Malinowska-Cieœlik, M.,  Gaspar De Matos, M., Cosma, A., Van  Den Eijnden, R.,  Vieno, A.,  Elgar,  F.J.,  Molcho,  M., Bjereld, Y., & Pickett, W. (2020). Social media  use  and  cyber-bullying: A  cross- national  analysis  of  young  people  in  42 countries.  Journal  of Adolescent  Health, 66(6), S100–S108. https://doi.org/10.1016/ j.jadohealth.2020.03.006 

Craig, W., Boniel-Nissim, M., King, N., Walsh, S., Boer, M., Donnelly, P., Harel-Fisch, Y., Malinowska-Cieœlik,  M.,  Matos,  M., Cosma, A., Eijnden, R., Vieno, A., Elgar, F., Molcho, M., Bjereld, Y., & Pickett, W. (2020).  Social  Media  Use  and  Cyber- Bullying: A  Cross-National Analysis  of Young People in 42 Countries. Journal of Adolescent  Health,  66,  S100–S108. Cybercrime Convention Committee (T-CY). (2018,  July).  Mapping  study  on  cyber- violence. 

Cyberbullying: What is it  and how  to stop it. (n.d.). Retrieved February 28, 2023, from https://www.unicef.org/end-violence/how- to-stop-cyberbullying. 

Dilmaç,  B. (2009).  Psychological  needs as  a predictor of cyber bullying: A preliminary report  on  college  students.  Educational Sciences: Theory  and  Practice,  9,  1307– 1325. 

Dooley, J.J., Py¿alski, J., & Cross, D. (2009). Cyberbullying Versus Face-to-Face Bully- ing: A Theoretical and Conceptual Review. Zeitschrift Für Psychologie / Journal of Psy- chology, 217(4), 182–188.  https://doi.org/ 10.1027/0044-3409.217.4.182 

Erdur-Baker, Ö. (2010). Cyberbullying and its correlation to traditional bullying, gender and frequent and risky usage of internet-mediated communication  tools. New  Media &  So- ciety,  12(1),  109–125.  https://doi.org/ 10.1177/1461444809341260 

Finkelhor,  D.,  J.  Mitchell,  K.,  &  Wolak,  J. (2000). Online victimization: A report on the nation’’s youth [Review of Online victimi- zation: A report on the nation’’s youth]. Re- search Gate. 

Gaming disorder. (n.d.). Retrieved February 24, 2023, from https://www.who.int/standards/ classifications/frequently-asked-questions/ gaming-disorder 

 Gibb, Z.G., & Devereux, P.G. (2016). Missing link: Exploring repetition and intentionality of distress in cyberbullying behaviors within a college population. Translational Issues in Psychological  Science,  2(3),  313–322. https://doi.org/10.1037/tps0000083 

Gibb, Z.G., & Devereux, P.G. (2014). Who does that  anyway?  Predictors  and  personality correlates  of  cyberbullying  in  college. Computers in Human Behavior, 38, 8–16. https://doi.org/10.1016/j.chb.2014.05.009 

Gredler,  G.R.  (2003).  Olweus,  D.  (1993). Bullying at school: What we know and what we  can  do.  Malden,  MA:  Blackwell Publishing, 140 pp., $25.00. Psychology in the Schools, 40(6), 699–700. https://doi.org/ 10.1002/pits.10114 

Greene, M.B. (2006). Bullying in Schools: A Plea for Measure of Human Rights. Journal of Social Issues, 62(1), 63–79. https://doi.org/ 10.1111/j.1540-4560.2006.00439.x 

Guo, S. (2016). A meta-analysis of the predictors of cyberbullying perpetration and victimiza- tion:  Cyberbullying  Perpetration  and Victimization. Psychology  in  the Schools, 53(4),  432–453.  https://doi.org/10.1002/ pits.21914 

Henzel, V., & Håkansson, A. (2021). Hooked on virtual social life. Problematic social media use and associations with mental distress and addictive  disorders.  PLoS  ONE,  16(4), e0248406. https://doi.org/10.1371/journal. pone.0248406 

Hill, R.M., Mellick, W., Temple, J.R., & Sharp, C. (2017). The role of bullying in depressive symptoms  from  adolescence to  emerging adulthood: A growth mixture model. Journal of Affective  Disorders, 207,  1–8. https:// doi.org/10.1016/j.jad.2016.09.007 

Hinduja, S., & Patchin, J.W. (2010). Bullying, cyberbullying,  and  suicide. Archives  of Suicide Research, 14(3), 206–221. https:// doi.org/10.1080/13811118.2010.494133  

Hinduja, S., & Patchin, J. (2008). Cyberbullying: An Exploratory Analysis of Factors Related to  Offending  and Victimization.  Deviant Behavior  - DEVIANT BEHAV, 29,  129– 156.  https://doi.org/10.1080/0163962070 1457816 

Hoff,  D.L.,  &  Mitchell,  S.N. (2009). Cyber- bullying:  Causes,  effects,  and  remedies. Journal  of  Educational Administration, 47(5),  652–665.  https://doi.org/10.1108/ 09578230910981107 

Huang,  C.  (2022). A  meta-analysis  of  the problematic  social  media  use and  mental health.  International  Journal  of  Social Psychiatry, 68(1),  12–33.  https://doi.org/ 10.1177/0020764020978434 

Hussain, Z., & Griffiths, M.D. (2018). Proble- matic  social  networking  site  use  and comorbid psychiatric disorders: A systematic review of recent large-scale studies. Frontiers in  Psychiatry,  9,  686.  https://doi.org/ 10.3389/fpsyt.2018.00686 

Hutson, E., Kelly, S., & Militello, L.K. (2018). Systematic review of cyberbullying interven- tions for youth and parents with implications for evidence-based practice: Cyberbullying interventions  for  individual  youth  and parents. Worldviews  on  Evidence-Based Nursing,  15(1),  72–79.  https://doi.org/ 10.1111/wvn.12257 

Jafarkarimi, H., Sim, A.T.H., Saadatdoost, R., &  Hee, J.M. (2016). Facebook Addiction among  Malaysian  Students.  International Journal of Information and Education Tech- nology,  6(6),  465–469.  https://doi.org/ 10.7763/IJIET.2016.V6.733 

Juvonen, J., & Gross,  E.F. (2008). Extending the School Grounds?-Bullying Experiences in Cyberspace. Journal  of  School Health, 78(9),  496–505.  https://doi.org/10.1111/ j.1746- 1561.2008.00335.x 

Kapitány-Fövény, M., Lukács, J.Á., Takács, J., Kitzinger, I.,  Soósné Kiss, Z., Szabó, G., Falus, A., & Feith, H. J. (2022). Gender- specific pathways regarding the outcomes of a cyber- bullying youth education program. Personality and Individual Differences, 186, 111338. https://doi.org/10.1016/j.paid.2021. 111338 

Kýrcaburun, K., Kokkinos, C.M., Demetrovics, Z., Király, O., Griffiths, M.D., & Çolak, T. S.  (2019).  Problematic  online  behaviors among  adolescents  and  emerging  adults: Associations between cyberbullying perpe- tration, problematic social media use, and psychosocial factors. International Journal of Mental Health and Addiction, 17(4), 891– 908.  https://doi.org/10.1007/s11469-018- 9894-8 

Kowalski,  R.M.,  Giumetti,  G.W.,  Schroeder, A.N., & Lattanner, M.R. (2014). Bullying in the digital age: A critical review and meta- analysis of cyberbullying  research  among youth. Psychological Bulletin, 140(4), 1073– 1137. https://doi.org/10.1037/a0035618 

Landstedt, E., & Persson, S. (2014). Bullying, cyberbullying, and mental health in young peo-  ple.  Scandinavian  Journal of  Public Health,  42(4),  393–399.  https://doi.org/ 10.1177/1403494814525004 

Li, W., O’Brien, J.E., Snyder, S.M., & Howard, M.O. (2016). Diagnostic Criteria for Prob- lematic Internet Use among U.S. University Students: A  Mixed-Methods  Evaluation. PLoS  ONE,  11(1),  e0145981.  https:// doi.org/10.1371/journal.pone.0145981 

Li, Q. (2010). Cyberbullying in High Schools: A Study of Students’ Behaviors and Beliefs about This  New  Phenomenon. Journal of Aggression, Maltreatment & Trauma, 19(4), 372–392. https://doi.org/10.1080/10926771 003788979 

Li,  Q.  (2006).  Cyberbullying  in  Schools: A Research  of  Gender  Differences.  School Psychology International, 27(2), 157–170. https://doi.org/10.1177/0143034306064547  

Macdonald, C., & Roberts-Pittman, B. (2010). Cyberbullying Among  College  Students: Prevalence and Demographic Differences. Procedia - Social and Behavioral Sciences, 9,  2003–2009.  https://doi.org/10.1016/ j.sbspro.2010.12.436 

Malaeb, D., Salameh, P., Barbar, S., Awad, E., Haddad, C., Hallit, R., Sacre, H., Akel, M., Obeid, S., & Hallit, S. (2021). Problematic social media use and mental health (Depres- sion, anxiety, and insomnia) among Lebanese adults: Any  mediating  effect  of  stress? Perspectives in Psychiatric Care, 57(2), 539– 549. https://doi.org/10.1111/ppc.12576 

Marttila, E., Koivula, A., & Räsänen, P. (2020). Cybercrime Victimization and Problematic Social Media Use: Findings from a Nation- ally Representative Panel Study. American Journal  of  Criminal  Justice,  46.  https:// doi.org/10.1007/s12103-021-09665-2 

Mazhari,  S.  (2012).  The  Prevalence  of Problematic Internet  Use and  the  Related Factors in Medical Students, Kerman, Iran. Addiction & Health, 4(3–4), 87–94. 

McKenna, K.Y.A., & Bargh, J.A. (2000). Plan 9 from cyberspace: The implications of the internet for personality and social psycho- logy. Personality and Social Psychology Re- view, 4(1), 57–75. https://doi.org/10.1207/ S15327957PSPR0401_6 

Meshi,  D.,  &  Ellithorpe,  M.E.  (2021). Problematic  social media  use  and  social support re- ceived in real-life versus on social media: Associations with depression, anxiety and social isolation. Addictive Behaviors, 119,  106949.  https://doi.org/10.1016/ j.addbeh.2021.106949 

Moretta, T.,  Buodo,  G.,  Demetrovics,  Z.,  & Potenza, M.N. (2022). Tracing 20 years of research on problematic use of the internet and  social  media:  Theoretical  models, assessment tools, and an agenda for future work.  Comprehensive  Psychiatry,  112, 152286.  https://doi.org/10.1016/j.comp psych.2021.152286 

Mishna, F., Khoury-Kassabri, M., Gadalla, T., &  Daciuk,  J.  (2012).  Risk  factors  for involvement  in  cyber  bullying: Victims, bullies  and  bully–victims.  Children  and Youth Services Review, 34(1), 63–70. https:/ /doi.org/10.1016/j.childyouth.2011.08.032 

Mitchell,  K.J.,  Jones,  L.M., Turner,  H.A., Shattuck, A., & Wolak, J. (2016). The role of technology in peer harassment: Does it amplify harm for youth? Psychology of Vio- lence,  6(2),  193–204.  https://doi.org/ 10.1037/a0039317 

Musharraf, S.,  & Anis-ul-Haque,  M. (2018). Impact  of  cyber  aggression  and  cyber victimization on mental health and well-being of pakistani young adults: The moderating role  of  gender.  Journal  of Aggression, Maltreatment & Trauma, 27(9), 942–958. https://doi.org/10.1080/10926771. 2017.1422838 

Notar,  C.,  Padgett,  S.,  &  Roden,  J.  (2013). Cyberbullying:  Resources for Intervention and  Prevention.  Universal  Journal  of Educational Research, 1(3), 133–145. https:/ /doi.org/10.13189/ujer.2013.010301 

Olowu, A. O., & Seri, F.O. (2012). A Study of Social Network Addiction among Youths in Nigeria. 4. 

Pandita Hakhroo, B. (2020). A Study On Types of Cyber Crimes And Cyber Attacks In India. 8, 1257. 

Patchin, J., & Hinduja, S. (2006). Bullies Move Beyond the Schoolyard A Preliminary Look at  Cyberbullying.  Youth  Violence  and Juvenile Justice, 4, 148–169. https://doi.org/ 10.1177/1541204006286288 

Polanin, J.R., Espelage, D.L., Grotpeter, J.K., Ingram,  K.,  Michaelson,  L.,  Spinney, E., Valido, A.,  Sheikh, A.E., Torgal,  C.,  & Robinson, L. (2022). A systematic review and  meta-analysis  of  interventions  to  decrease  cyberbullying  perpetration  and victimiza- tion. Prevention Science, 23(3), 439–454. https://doi.org/10.1007/s11121- 021-01259-y 

Restrepo, A.,  Scheininger,  T.,  Clucas,  J., Alexander, L., Salum, G. A., Georgiades, K., Paksarian,  D.,  Merikangas,  K.R.,  & Milham, M.P. (2020). Problematic internet use in children and adolescents: Associations with psychiatric disorders and impairment. BMC Psychiatry, 20(1), 252. https://doi.org/ 10.1186/s12888-020-02640-x 

Rice, E., Petering, R., Rhoades, H., Winetrobe, H., Goldbach, J., Plant, A., Montoya, J., & Kordic, T. (2015). Cyberbullying Perpetra- tion  and  Victimization Among  Middle- School Students. American Journal of Public Health,  105(3),  e66–e72. https://doi.org/ 10.2105/AJPH.2014.302393 

Salem,  A.A.  M.S.,  Al-Huwailah,  A.H., Abdelsattar, M., Al-Hamdan, N.A.H., Derar, E., Alazmi,  S., Abu Al-Diyar,  M.,  & Griffiths,  M.D.  (2023).  Empathic  skills training  as  a  means  of  reducing  cyber- bullying among adolescents: An empirical evaluation. International Journal of Environ- mental Research and Public Health, 20(3), 1846.  https://doi.org/10.3390/ijerph200 31846 

Schenk, A., & Fremouw, W. (2012). Prevalence, Psychological Impact, and Coping of Cyber- bully  Victims Among  College  Students. Journal  of  School Violence,  11,  21–37. https://doi.org/10.1080/15388220.2011. 630310 

Schultze-Krumbholz, A.,  Zagorscak,  P.,  & Scheithauer,  H.  (2018). A  school-based cyberbullying  preventive  intervention approach: The Media Heroes program *. In Reducing  Cyberbullying  in  Schools  (pp. 145–158). Elsevier. https://doi.org/10.1016/ B978-0-12- 811423-0.00011-0 

Shapka, J.D. (2011). Internet socializing online: What are the risks?. Perth, Australia: Curtin University of Technology 

Singh, S.,  Dixit, A.,  & Joshi,  G.  (2020).  “Is compulsive social media use amid COVID- 19 pandemic addictive behavior or coping mechanism? Asian Journal of Psychiatry, 54, 102290. https://doi.org/10.1016/j.ajp.2020. 102290 

Shannon,  H.,  Bush,  K.,  Villeneuve,  P.J., Hellemans,  K.G.,  & Guimond, S. (2022). Problematic social media use in adolescents and  young  adults:  Systematic  review and meta-analysis. JMIR  Mental Health, 9(4), e33450. https://doi.org/10.2196/33450 

Singh, V., & Sonkar, N. (2013). Cyber bullying: experiences, impacts and coping strategies among  young  adults.  Indian  Journal  of Health  and Wellbeing,  4(8),  1584–1586. https://www.i-scholar.in/index.php/ijhw/ article/view/147521 

Slonje, R., & Smith, P. (2008). Cyberbullying: Another main type of bullying? Scandinavian Journal of Psychology, 49, 147–154. https:/ /doi.org/10.1111/j.1467- 9450.2007.00611.x 

Smith, P. K. (2012). Cyberbullying and cyber aggression. In Handbook of school violence and school safety: International research and practice, 2nd ed (pp. 93–103). Routledge/ Tay- lor & Francis Group. 

Smith, P.K., Mahdavi, J., Carvalho, M., Fisher, S., Russell, S., & Tippett, N. (2008). Cyber- bullying: Its nature and impact in secondary school pupils. Journal of Child Psychology and  Psychiatry,  49(4),  376–385.  https:// doi.org/10.1111/j.1469-7610.2007.01846.x 

Sourander, A., Brunstein Klomek, A., Ikonen, M., Lindroos, J., Luntamo, T., Koskelainen, M., Ristkari, T.,  & Helenius, H. (2010). Psychosocial Risk Factors Associated With Cyberbullying Among Adolescents: A Population-Based  Study. Archives  of General Psychiatry, 67, 720–728. https:// doi.org/10.1001/archgenpsychiatry.2010.79  

Spotlight on adolescent health and well-being | HBSC study. (n.d.). Retrieved February 25, 2023,  from  https://hbsc.org/publications/ reports/spotlight-on-adolescent-health-and- well-being/ 

Takizawa, R., Maughan, B., & Arseneault, L. (2014). Adult health outcomes of childhood bul- lying victimization: Evidence from a five-decade longitudinal british birth cohort. American Journal of  Psychiatry,  171(7), 777–784. https://doi.org/10.1176/appi.ajp. 2014.13101401 

Thirusangu, S., Kumar, A., Akansha, Yadav, A., Kumari, A., Mishra, A., Shakya, S., & Patel, T. (2020). A Comparative Study to Assess the Level of Internet Addiction Among B.Sc. Nursing and GNM Students at Rama College of Nursing Kanpur with a view to De- velop Information  Booklet. Asian  Journal  of Nursing  Education  and  Research,  10(3), 351.  https://doi.org/10.5958/2349-2996. 2020.00075.0 

Tokunaga, R.S.  (2010). Following you home from school: A critical review and synthesis of research on cyberbullying victimization. Computers in Human Behavior, 26(3), 277– 287.  https://doi.org/10.1016/j.chb.2009. 11.014 

Topcu,  Ç.,  &  Erdur-Baker,  Ö.  (2010). The Revised Cyber Bullying Inventory (RCBI): Validity  and reliability  studies. Procedia - Social and Behavioral Sciences, 5, 660–664. https://doi.org/10.1016/j.sbspro.2010. 07.161 

Tsitsika, A., Janikian, M., Wójcik, S., Makaruk, K., Tzavela, E., Tzavara, C., Greydanus, D., Merrick,  J.,  &  Richardson,  C.  (2015). Cyberbullying victimization prevalence and associations with internalizing and externa- lizing problems among adolescents in six Eu- ropean  countries.  Computers  in  Human Behavior, 51, 1–7. https://doi.org/10.1016/ j.chb.2015.04.048 

 UNICEF poll: More than a third of young people in 30 countries report being a victim of online bullying. (n.d.). Retrieved August 4, 2021, from  https://www.unicef.org/press-re- leases/unicef-poll-more-third-young-people- 30-countries-report-being-victim-online- bullying 

Vandebosch,  H.,  &  Cleemput,  K.V.  (2008). Defining  Cyberbullying: A  Qualitative Research into the Perceptions of Youngsters. Cyberpsychology Behav. Soc. Netw. https:/ /doi.org/10.1089/cpb.2007.0042 

Varjas, K., Henrich, C.C., & Meyers, J. (2009). Urban middle school students’ perceptions of bullying, cyberbullying, and school safety. Journal  of School Violence, 8,  159–176. https://doi.org/10.1080/153882208020 74165 

Walrave,  M., & Heirman, W.  (2011). Cyber- bullying:  Predicting  Victimisation  and Perpetration:  Cyberbullying.  Children  & Society,  25(1),  59–72.  https://doi.org/ 10.1111/j.1099- 0860.2009.00260.x 

Williams,  K.R.,  &  Guerra,  N.G.  (2007). Prevalence  and  Predictors  of  Internet Bullying.  Journal  of Adolescent  Health, 41(6),  S14–S21.  https://doi.org/10.1016/ j.jadohealth.2007.08.018 

Wong-Lo, M., & Bullock, L. M. (2011). Digital Aggression:  Cyberworld  Meets  School Bullies.  Preventing School Failure: Alter- native  Education  for Children  and Youth, 55(2),  64–70.  https://doi.org/10.1080/ 1045988X.2011.539429 

World  Health  Organization.  (n.d.).  Gaming disorder. Www.who.int. https://www.who. int/standards/classifications/frequently- asked-questions/gaming-disorder 

Whittaker,  E.,  &  Kowalski,  R.M.  (2015). Cyberbullying via social media. Journal of School  Violence,  14(1),  11–29.  https:// doi.org/10.1080/15388220.2014.949377 

Willard,  N.E.  (2007).  Cyberbullying  and  cyberthreats: Responding to the challenge of online  social  aggression,  threats,  and distress. Research Press. 

Ybarra, M.L., & Mitchell, K.J. (2004). Online aggressor/targets, aggressors, and targets: A comparison of associated youth character- istics. Journal of Child Psychology and Psy- chiatry, 45(7), 1308–1316. https://doi.org/ 10.1111/j.1469-7610.2004.00328.x 

Yudes, C., Rey,  L.,  & Extremera, N. (2020). Predictive Factors of Cyberbullying Perpetration amongst Spanish Adolescents. Inter- national Journal of Environmental Research and Public  Health, 17(11),  3967. https:// doi.org/10.3390/ijerph17113967 

Zhu, C., Huang, S., Evans, R.,  & Zhang, W. (2021). Cyberbullying Among Adolescents and Children: A Comprehensive Review of the  Global  Situation,  Risk  Factors,  and Preventive  Measures. Frontiers  in  Public Health, 9, 634909. https://doi.org/10.3389/ fpubh.2021.634909  



Journal of Society for Addiction Psychology | Volume 1 | Issue 1 | March 2024 Page 24 - 39